Modelling across extremal dependence classes

نویسندگان

  • J. L. Wadsworth
  • J. A. Tawn
  • A. C. Davison
  • D. M. Elton
چکیده

Different dependence scenarios can arise in multivariate extremes, entailing careful selection of an appropriate class of models. In bivariate extremes, the variables are either asymptotically dependent or are asymptotically independent. Most available statistical models suit one or other of these cases, but not both, resulting in a stage in the inference that is unaccounted for, but can substantially impact subsequent extrapolation. Existing modelling solutions to this problem are either applicable only on sub-domains, or appeal to multiple limit theories. We introduce a unified representation for bivariate extremes that encompasses a wide variety of dependence scenarios, and applies when at least one variable is large. Our representation motivates a parametric model that encompasses both dependence classes. We implement a simple version of this model, and show that it performs well in a range of settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme Value Modelling of Water-related Insurance Claims

This paper considers the dependence between weather events, e.g., rainfall or snow-melt, and the number of water-related property insurance claims. Weather events which cause severe damages are of general interest, decision makers want to take efficient actions against them while the insurance companies want to set adequate premiums. The modelling is challenging since the underlying dynamics va...

متن کامل

Stress-Strength and Ageing Intensity Analysis via a New Bivariate Negative Gompertz-Makeham Model

In Demography and modelling mortality (or failure) data the univariate Makeham-Gompertz is well-known for its extension of exponential distribution. Here, a bivariate class of Gompertz--Makeham distribution is constructed based on random number of extremal events. Some reliability properties such as ageing intensity, stress-strength based on competing risks are given. Also dependence properties...

متن کامل

Asymptotic Analysis of Multivariate Coherent Risks

Multivariate coherent risks can be described as classes of portfolios consisting of extra capital reserves that are used to cover potential losses under various scenarios. Tail risk refers to the risk associated with extremal events and is often affected by extremal dependence among multivariate extremes. Multivariate tail risk, as measured by a coherent risk measure of tail conditional expecta...

متن کامل

Tail dependence in bivariate skew-Normal and skew-t distributions

Quantifying dependence between extreme values is a central problem in many theoretical and applied studies. The main distinction is between asymptotically independent and asymptotically dependent extremes, with important theoretical examples of these general limiting classes being the extremal behaviour of a bivariate Normal distribution, for asymptotic independence, and of the bivariate t dist...

متن کامل

Credit Risk Modelling and Estimation via Elliptical Copulae

Dependence modelling plays a crucial role within internal credit risk models. The theory of copulae, which describes the dependence structure between a multi-dimensional distribution function and the corresponding marginal distributions, provides useful tools for dependence modelling. The difficulty in employing copulae for internal credit risk models arises from the appropriate choice of a cop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015